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The approaches of Datzeff (C. R. Acad. Bulg. Sci. 12 (1959) 113, 285) and Wittrick and 
Williams (Quart. J. Mech. Appl. Math. XXIV (1971), 263; ht. J. Mech. Sci. 16 (1974), 209) 
have been incorporated to develop a procedure for the automatic computation of the eigen- 
values and the eigenfunctions of one-dimensional linear Sturm-Liouville boundary value 
eigenproblems, both singular and nonsingular. The continuous coefftcients of a regular 
Sturm-Liouville problem have been approximated by a finite number of step functions. In 
each step the resulting boundary value problem has been integrated exactly and the solutions 
have then been matched to construct the continuously differentiable solution of the original 
problem and the corresponding eigencondition. Step sizes have been chosen automatically so 
that the local error has been held in a predetermined interval. Representative test examples 
have been computed to illustrate the accuracy, reliability, and efliciency of the algorithm 
proposed. 

1. INTRODUCTION 

The solution of various problems in the field of mathematical physics and 
engineering is closely related to the solution of the corresponding one-dimensional 
linear Sturm-Liouville boundary value eigenproblem. As particular examples, one 
could imagine the one-dimensional Schrodinger equation with space-dependent 
potential function and numerous problems of physico-chemical kinetics [ 5 1. 

A number of methods have been developed to solve one-dimensional Sturm- 
Liouville problems, among these finite difference methods 16, 7 1, imbedding 
techniques 181, and shooting type procedures [9, 101 based on integrators for systems 
of ordinary differential equations. Regardless of the particular method utilized, one 
always has difftculties with the computation of the higher-order eigenvalues and 
eigenfunctions due to their rapid oscillation character. This results in the need for 
finer interval of integration resolution, thus making the computer time involved 
unreasonable. 

Recently Hargrave [ 111 and Bailey [ 12, 131 proposed to solve linear Sturm- 
Liouville eigenproblems utilizing a Priiffer transformation of the original problem. 
This turned out to be helpful because the approach allowed one to compute the eigen- 
values solving only one ordinary differential equation numerically. Moreover, in the 
corresponding initial value problem the order of the eigenvalue was present explicitly, 
thus making the computational procedure safe from missing eigenvalues. One other 
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feature of the method discussed is that the general purpose integrators are safer when 
applied to the phase function instead of being applied directly on the eigenfunction 
[ 121. After analyzing in detail the integration methods available to solve numerically 
Sturm-Liouville eigenproblems, Bailey developed a general purpose solver based on 
the Priiffer transformation that was tested on a number of examples [ 12, 13 I. 

In [ 1,2] Datzeff developed a method enabling one to obtain principally an approx- 
imation of the whole infinite spectrum of the one-dimensional linear space-dependent 
Schrodinger equation. A stepwise approximation of the external potential function 
was applied, thus replacing the original problem with a sequence of finite sets of 
Sturm-Liouville problems with constant coefficients defined on subintervals of the 
initial interval of integration. He also proved that the spectra of the approximate 
problems tend to the spectrum of the original problem as the length of the largest 
subinterval tends to zero. Any such approximation of the original problem can be 
integrated exactly in terms of circular and hyperbolic functions. The solutions detined 
on consequent subintervals can then be matched at the corresponding interfaces to 
ensure continuous differentiability of the solution of the approximate problem and to 
derive the eigencondition of the problem. Such an approach guarantees roughly the 
same accuracy of the ground and the higher-order eigenvalues and eigenfunctions. 
These papers were published at the beginning of the computer era and thus no 
numerical examples were presented to illustrate the computational advantages of this 
method. 

The same approach was later developed by Canosa and Oliveira 1141. They 
illustrated its efficiency by many numerical examples. The method was tested again 
by Canosa [ 151 to show its applicability for some practically asymptotic problems. A 
trial and error procedure was used to locate the eigenvalues, based on the 
computation of det[K(A)] f or randomly chosen values of 1 and simply observing 
where the determinant changed sign. Such a procedure, however, is generally not safe 
from missing eigenvalues in the course of the computation. 

Wittrick and Williams [3, 41 developed an extremely efficient algorithm (in terms 
of computer time) for the safe and automatic computation of the natural frequencies 
and buckling loads of linear elastic skeletal structures. It permits one to estimate 
exactly how many natural frequencies lie below any fixed value of the frequency 
parameter without calculating them explicitly, thus being able to obtain upper and 
lower bounds for any required eigenfrequency to any desired accuracy. 

Purpose of the present paper is to combine the approaches of Datzeff and of 
Wittrick and Williams to develop a computational procedure for the solution of one- 
dimensional linear Sturm-Liouville boundary value eigenproblems. The applicability 
of the algorithm will be demonstrated by recalculating several problems previously 
published. 
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2. STATEMENT AND ANALYTICAL ASPECTS OF THE PROBLEM 

The present discussion concerns the one-dimensional linear Sturm-Liouville 
boundary value eigenproblem 

(d/dx)(~(x)(d/dx) y(x, A )> + W-(x) - 4(x)) yu(x, A) = 0, a <x<b, (la) 

a0 Y(x, ‘4 > - P, p(x)(qdx) qx, A ) = 0, x = a, (lb) 

a, qx, A ) + P, P(X)(d/dX) qx, n > = 0, x = b, (lc) 

where the constants ao, PO, a,, and p, are real and independent of the parameter A. 
A linear boundary value problem described by equations such as (lat( lc) is said 

to be regular [ 11-131 when: 

(a) [a, b] is finite, 

(b) p(x), r(x), and q(x) are continuous in [a, b], 

(c) p(x) is continuously differentiable in [a, b], and 

(d) p(x) and r(x) are positive in [a, b]. 

If one or more of conditions (ak(d) are violated, the problem is said to be singular. 
Let the coefficients p(x), r(x), and q(x) be approximated by stepwise functions as 

dx) = Pk 5 r(x) = ?-k, dx) = qk 

for xk-l < x < xk, k = 1, 2 ,..., n, x0 = a, x, = b. This choice of the approximation of 
the coefficients is convenient in utilizing the standard mathematical functions present 
in practically all kinds of digital computers [ 161. In this way even a regular problem 
like Eqs. (la)-(lc) is replaced by a singular one. The values of the constants pk, rk, 
and qk, k = 1,2,..., n, can be chosen in various manners; they can be taken as the 
values of the coefficients p(x), r(x), and q(x) at the midpoints of the corresponding 
subintervals 1,) 1, = xk - xk-, , or they can be estimated as the (eventually weighted) 
average of the values of the coefficients at the endpoints of the subinterval as in [ 14, 
151. Here the division of the original interval into subintervals is taken for granted, 
while in a later section a procedure will be described to solve this problem. 

In any of the subintervals 1, = xk - xk- i, k = 1, 2,..., n, Eq. (a) can be replaced by 
an equation of the kind 

where 

(d2ll/,(x, L)/dx2) + u: W&b n) = O, xk-, <x<x,, @a) 

Loi = tArk - qk)/Pk 1 k = 1, 2 ,..., n. (3b) 

It is seen that the coefficients in Eq. (3a) satisfy the regularity requirements in the 
interior of the corresponding subinterval except possibly at some endpoint, a case to 
be discussed in what follows. 
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If one imposes the restriction that Y(x, A) has a continuous first derivative in the 
interior of the original interval of integration, then one has to match the eigenfunction 
and its first derivative at the endpoints of the corresponding subintervals, thus 

Wk(-G 1) = Wkf I@, n>Y x=xk, k= 1,2 ,..., n- 1, (3~) 

Pk(+ktX, A)/dx) = Pk+ It&k+ Icx, i)/dx), x = xk, k = 1, 2 ,..., n - 1, (3d) 

while Eqs. (lb) and (Ic) take the form 

%Wl(X, A> -PoPl(dWl(x,~)ldx)=o, x=x(), (3-3 

a, Yl”(XI 1) + P, P”W”(X, J)ldx) = 0, x=x,. WI 

Thus the original problem, Eqs. (la)-( lc) has been replaced by the approximation, 
Eqs. (3ak(3f). The computed eigenvalues A of the latter problem will be considered 
in what follows as approximations to the eigenvalues A of problem (la)-(lc). 
Moreover, the finer the resolution of the original interval of integration, the better an 
approximation of the eigenvalues of the original problem (Eqs. (lak(lc)) will be 
obtained, as was shown by our numerical experiments and in 114, 15 I. 

The solution of Eq. (3a) for W: > 0 is 

v/k(& A> = vkcxk- 1) ‘1 
sin(ok(xk - x)) 

+ Wk(Xk, ‘) 

sin(@k(x - xk - 1)) 

sin(w&k) sin(oklk) ’ W 

where xk-, < x < xk, wklk # jz, j = 1,2 ,... . If W: = 0, then Eq. (4a) takes the form 

Wk(XY I> = v/kcxk-, 2 n)((xk - x)/lk) + wktxk Y ‘)(tx - xkp I )/lk) (4b) 

If W: < 0, Eq. (4a) takes the form 

wk(xv n) = WkfXk- 11 A> 

sinh(o,*(x, -x)) 
+ WktXk, A) 

sinh(o,*(x - xk- ,)) 
sinh(w:l,) sinh(w: 1,) ’ (4c) 

o,f = (abs(m:))““, k = 1, 2 ,..., n. (44 

In Eqs. (4a)-(4c) the integration constants were expressed by means of the values 
of the eigenfunction at the endpoints of the corresponding subintervals. 

To satisfy the external and interface boundary conditions of Eqs. (3c)-(3f), one 
has 

((%/P,) + A,) v&>-B, w,(A) = 03 (54 

--Bk~k~l(~)+(Ak+Ak+,)Vlk(~)-Bkf,Wk+,(~)=O, k = 1, 2 ,..., n - 1, (Sb) 

--Bn IYn- I@> + 64, + (%/P”>> v,@) = 03 (5c) 
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where 

w,(n) = V/ktXk, l> = vk+ lcXk, ‘>, k = 1, 2 ,..., n - 1, (54 

and 

A, = B, cos(w,l,), w: > 0, (6a) 

B, = Pk/lkr A,=B,, w;=o, (6b) 

B, = pko,*/sinh(o,*lk), A, = B, cosh(w,*l,), co: <o, (6~) 

and k = 1, 2 ,..., n. 
Equations (5a)--(5c) form a linear system of (n + 1) homogeneous equations for 

the determination of w,(A), k = 0, 1, 2 ,..., n. In matrix notation it has the form 

where 

IW)l = 

ii, -B, 
-B, 2, 

0 -2 

0 . . . 
. . . 

0 . . . 
0 . . . 

A, = (G&J + A, 3 

A,=A k-l +A,, 

A, = An + WPA 

0 0 . . . 0 
-B, 0 . . . 0 
A2 -B, .a. 0 

-B,-, A,-, -Bk 

0 -B,_, 
0 0 

k = 1, 2, 3 ,..., n - 1 

0 

0 
0 

. . . 
A,-, 
-Bn 

0 

0 

0 

0 

-B, 

A, _ 

1 Vb) 

(7c) 

(74 

6% 

and 

Iw@>l’= {w,(n)9 v,(~L w”(n)1 Uf) 
is the transpose of {w(A)}. In order that a nonzero solution for {w(A)} exists, one has 

det( [K(A)] = 0. (8) 

The infinite number of real roots of transcendental equation (8) are the eigenvalues 
of the approximate problem of Eqs. (3a)-(3f). Their computation is the core of the 
procedure to be described in the sections to follow. 
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3. PROCEDURE FOR THE COMPUTATION OF THE EIGENVALUES 

Wittrick and Williams [3, 41 developed an efficient procedure to compute the 
eigenfrequencies and the buckling loads of elastic linear skeletal structures. Since 
Eq. (8) is presented in the same form as that utilized by Wittrick and Williams, it is 
not difficult to adapt their procedure to the problem considered in the present paper. 

Williams and Wittrick have shown that the number of positive eigenvalues N(X) 
lying between zero and some prescribed positive value of A= 1 is 

N(X) = &l(J) + s(l~(m (9) 

where N,(x) is the number of positive eigenvalues not exceeding 1 when all 
components of the vector (w(x)) corresponding to [K(x)] are zero and s( [K(x) ]) 
denotes the “sign count” of [K(X)]. 

To find N,(X) one takes into account the fact that since all components of the 
vector (w(x)} are zero, the system of equations (3a) degenerates into a decoupled set 
of equations 

(d2y/,(x, I)/dx’) + G~w~(x, 1) = 0, xk-, < x < xk, k = I,2 ,..., n, (lOa) 

subject to the boundary conditions 

(lob) 
(1Oc) 

The eigencondition of problem (lOab( 1Oc) is 

sin(G,f,) = 0. 

It has an explicit solution only if 6: > 0, namely, 

cZkIk = jn, j = 1, 2,... . (1 lb) 

Thus, N,(x) is equal to the total number of eigenvalues of the kind (Eq. (11 b)) 

(12) 

where the value of the function int(.) is the largest integer not exceeding the value of 
the argument of the function. 

The “sign count” is shown [3] to be equal to the number of negative elements 
along the main diagonal of the matrix [K’(X)], which is the triangulated form of the 
matrix [K(x)], or equivalently, the number of negative elements in the sequence 
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DJD,, D,/D,, D,fD, ,..., Dn/Dn-,, where D,, k = 1, 2 ,..., n, denotes the kth order 
principal minor of the matrix [K(X)], D, = 1, D, =A,. In view of the tridiagonal 
structure of this matrix, one has 

Dk=Dk-,(Ak+Ak~,)-Dk-ZB~-,, k = 2, 3,. .., n. (13) 

The case of Dirichlet boundary conditions at x=x0 or at x =x,, or at both 
endpoints corresponds to /3, = 0 or/and p, = 0, thus resulting in A, + co or/and 
x,, --) co. In any of these case one simply neglects the corresponding row and column 
of [K(x)] as they do not influence the elimination process described by Eq. (13) and 
imply v,(x,, 1) = 0 or/and ~~(x,,, 1) = 0. 

As both terms on the right-hand side of Eq. (9) can be computed, one has the 
following algorithm to calculate any positive eigenvalue of the approximate problem 
of Eqs. (3a j(3f): 

Step 1. Prescribe values of i, the order of the eigenvalue Li desired and ci, the 
(absolute) accuracy in Ai ; set lower bound for Ai, 1, = 0, upper bound for Li, 1, = 0, 
current value of the L-parameter, L = 0; in case there is additional information 
concerning Ai, set more appropriate values for the parameters listed to save computer 
time. 

Step 2. Define the increment 8 in 1, 8# 0; set I= 1 + 8, i, = 2; compute N(X). 

Step 3. If N(X) 2 i, go to Step 5, else go to Step 4. 

Step 4. Parameter 1 is a lower bound for Li; set A, = 1, go to Step 2. 

Step 5. Parameter 1 is an upper bound for Li ; set AU = 1. 

Step 6. Compute AL = abs(;l, -A,); if Al < Ed, go to Step 10, else go to Step 7. 

Step 7. Compute X = (A, + L,)/2; compute N(;i). 

Step 8. If N(l) > i, set A, = I and go to Step 6, else go to Step 9. 

Step 9. Set A, = 1; go to Step 6. 

Step 10. Li = (1, + &)/2. 

4. COMPUTATION OF THE EIGENFUNCTIONS 

Once the eigenvalue Ai has been located, one might want to know some values of 
the eigenfunction ~jl~(x, Li) at (possibly) previously prescribed positions. The 
computation of the eigenfunction can be carried out making use of Eqs. (5) and (6). 
The choice of vi, r(xO, ni) = /I,, and pI(d/dx) vi, ,(x0, ni) = a,, satisfies identically 
Eq. (3e). Therefore, introducing 
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into Eq. (5a), one obtains 

Wi,&) = (%I +Alm/B,. (14b) 

Equation (5b) can be rewritten as 

‘//i.k+1(IZi)=((Ak+Ak+1)Wi,k(~i)-BkV/k-I(~i))lBk+I, k = 1, 2 ,..., n - 1. (14~) 

The last recurrence relation, Eq. (14c), enables one to compute all the components 
of the vector (w(A,)} of Eq. (7f), which are the values of the eigenfunction vi(x, Ai) 
corresponding to the eigenvalue Ai at the endpoints of the subintervals I,, 
k = 1, 2 ,..., n. 

From Eqs. (5) it can be seen that in case the exact eigenvalues of the approximate 
problem (Eqs. (3)) are known and if the coefftcients A, and B,, k = 1, 2,..., n, of 
Eqs. (6) can be computed exactly, then Eq. (5~) should be satisfied identically. But to 
the extent that the computation cannot be performed exactly and the eigenvalues can 
be computed approximately in the sense of the algorithm described in Section 3, the 
left-hand side of Eq. (5~) cannot become zero. Its value can be considered as an 
estimate for the global error in the computation of the eigenfunction. For the special 
case of a Dirichlet boundary, when Eq. (5~) is not considered, the accuracy estimate 
can be obtained by Eq. (5b), written for k = n - 1 and bearing in mind that that 
Vi.nCni> = O* 

The norm .Ni of the eigenfunction vi@, Ai) can be defined as 

(15) 

and in view of Eqs. (4) and (6) one has 

I 
Xk 

v,‘,,(x~ li)dx= (@,w:)-‘{(w:-~ + ~:)(B:ld~k-Ak) 
Xk-I 

+ 2B,cvk--Ivk(l -A,WP,)L (16) 

where vk = vjJx,, Ai) and the constant o:, A,, and B, are calculated for II = 1;. 

5. CHOOSING STEP SIZES 

The purpose of the procedure to be described is to construct the division of the 
interval [a, b] into subintervals lk, k = 1,2,..., n, in such a manner that the local error 
in the values of the eigenfunction computed be held at a prescribed level and be of 
comparable magnitude for any of the subintervals necessary to approximate the 
original problem. 

Our strategy is based on the assumption that the eigenfunction is quite sensitive in 
respect to the eigenvalue parameter A. Thus, if one is able to compute the values of 
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some function i,Fi(x, xi) that oscillates at least as rapidly as the eigenfunction wanted, 
where xi is some upper bound for the eigenvalue Ai, on the basis of two different 
divisions of the interval [a, b], the second of them j times finer than the first, and the 
corresponding values computed are equal in the sense of some predetermined local 
error level, then the rougher of these two divisions of [a, b] could be used to compute 
the desired eigenvalue and the corresponding eigenfunction with approximately the 
same local accuracy. 

Having in mind the procedure described in the previous section for the 
computation of the eigenfunction, the following principal algorithm could be used to 
find the division of [a, b]: 

Step 1. Prescribe the following quantities: upper and lower bounds E,,, and 
&min 3 respectively, for the local error of the function Wi(x, Ii) for an arbitrary subin- 
terval, where i is the order of the eigenvalue Li and the corresponding eigenfunction 
v,(x, Li) to be computed; Ii is an upper bound of ki and Wi(x, 1,) oscillates at least as 
rapidly as v,(x, L,); 1, is the initial guess for the first subinterval I, = x, - x0 ; l,i, is 
the minimal admissible length of an arbitrary subinterval of the division of [a, b ] to 
be computed (the maximum admissible length for the subinterval is [a, 61 itself); fix 
an integer j by means of which a j times liner division of [a, 61 could be generated. 

Step 2. Set k= 1, l-l,, 2=x,. 

Step 3. Set lj = l/j. 

Step 4. Compute u/# + Z, xi) directly from Eqs. (14). 

Step 5. _ Compute I+$“@ + 1, XL), utilizing successively the values tiii(Z + lj, xi), 
pi(Z + 2Zj, Li) ,..., I,?~@ + (j- l)lj, JJ, and Eqs. (14). 

Step 6. If I&“@ + 1, xi) and vi@ + 1,x,) are equal in the sense of the local error 
prescribed, go to Step 9; else go to Step 7. 

Step 7. If I < 1,,,, go to Step 12; else go to Step 8. 

Step 8. Decrease (set 1= lj) or increase (set I = jl) the guess for the subinterval 
considered and go to Step 3. 

Step 9. Accuracy requirements are satisfied; set 1, = I, X=X + 1, k = k + 1. 

Step 10. IfI+I=x,,gotoStep3;elsegotoStep11. 

Step 11. This is the correct exit of the algorithm; the last subinterval has to be 
adjusted so that I, = x, - 2 in the sense of some error tolerance. At this place one has 
the number of the subintervals for the eigenvalue considered n = k + I and the 
division of [a, b] into n subintervals, thus being able to utilize the algorithms for the 
computation of Li and wi(x, Li) described earlier. 

Step 12. This is the error exit, indicating in general that the accuracy 
requirements are not appropriately chosen. 
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The estimate Ii+ I for the next eigenvalue Ai+, can be obtained utilizing the division 
by means of which lli and vi(x, ni) have been computed and j, can be obtained 
starting from some initial (e.g., uniform) division of [a, b]. 

A simpler approach can be used by finding an estimate 2, for the eigenvalue A,,. 
where m is the order of the highest eigenvalue that has to be computed. 

A check on the global error of the w function computed can be performed by 
making use of Eq. (5~) or Eq. (5b) for k = n - 1 as was described in the previous 
section; thus the inequality should be satisfied 

(17) 

where for an upper bound for the global error one can assume 

& global ” ‘rnax * n. (18) 

In case Eq. (5b) has to be used instead of Eq. (5~) one sets k = n - 1 and obtains the 
corresponding expression for the left-hand side of Eq. (17). 

The choice of step sizes in our method, as seen from the above, is not directly 
related to the eigenvalue under consideration, since the analytical function 
representing the eigenfunction may have any number of oscillations in a single subin- 
terval. 

6. APPLICABILITY OF THE ALGORITHM 

To discuss the applicability of this algorithm one has to recall some well-known 
qualitative results from the theory of the one-dimensional linear Sturm-Liouville 
problems. Ince has shown [ 17, Sect. 10.6 1 ] that if p(x) > 0, r(x) > 0, and q(x) > 0 in 
the finite interval [a, b], and if these three functions together with the coefftcients a,,, 
P oy an3 and /I,, do not depend on the eigenvalue parameter )L, then the corresponding 
regular eigenvalue problem has a numerable set of positive eigenvalues 

O<A, <A, < ... (19) 

with + co as the only limit point of the sequence in Eq. (19). This is the case 
discussed in the previous sections. 

If q(x) changes sign in [a, b], the set of the eigenvalues has the same character with 
the only exception that the sequence in Eq. (19) is shifted towards the negative 
semiaxis and A, > min(q(x)), a <x < b. So let 

A=/.-c, A=M-CC, (204 

and substitute Eq. (20a) into Eq. (la) to obtain 

(~/~x)(P(xww, M)@) + (f@(x) - q”(x)) Y(x, M) = 0, (2Ob) 
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where 

4”(x) = Cr(x) + q(x) WC) 

and the constant C is chosen so that q*(x) > 0, a <x < 6. The shifted problem of 
Eq. (20b) can readily be solved utilizing the algorithm described to find a sequence of 
eigenvalues 

and through Eq. (20a) to recover the original spectrum Ai, i = 1, 2,... . 
Ince has also shown that if T(X) changes sign in [a, b] while q(x) > 0 there, then 

one has for the spectrum 

-a < . . . < 1, <A,;-, < ... </1;<0<A:<A:<...<taJ. (21a) 

After computing the positive part of the spectrum as was already described, one 
might set 

A=-v, @lb) 

which is equivalent to a reversal of the sign of r(x); in this way one is able to 
compute the negative part of the spectrum to such a problem. 

The next case to be considered is the presence of interface resistance h,., + , 
[ 18, 191 between two subintervals I, and I,, , of the division of [a, b]. Now, boundary 
condition (3d) takes the form 

Pa) 

Assume that one could insert a fictitious subinterval I,,,, , between the subintervals I, 
and 4+,, such that w:,~+, = 0. Consequently, rk k+, = 0 and qA k+, = 0. Taking 
arbitrary values for P~,~+, and I,.,, , such that 

pk./+ A.~+ 1 = hk.k+ 13 (22b) 

the procedure described above can again be applied to solve the corresponding 
Sturm-Liouville eigenproblem. 

The last class of problems to be considered in this section is that of the singular 
problems, characterized by infinite endpoint singularities. The theory developed in 
120, Part 1, Chap. V, 5.1 j considers the complex Sturm-Liouville problem and states 
that (only case b + co will be considered): 

(i) if b --$ co and lim,,, q(x) = co, the spectrum is numerable; 
(ii) if b + co and lim,,, q(x) = qo, where q,, is finite, then the spectrum has 

either a finite discrete component and a continuous component or it is continuous; 



334 MIKHAILOV AND VULCHANOV 

(iii) if b + co and lim,,, q(x) = --oo while the integral 

I 

cc 

abs(q(x)) - “* dx 
a 

has a finite limit (a is assumed to be finite), one has the spectrum of (i); otherwise the 
spectrum is continuous. 

Case (iii) will not be considered in what follows inasmuch as the authors have no 
evidence of the applicability of this case to real Sturm-Liouville problems. 

To discuss cases (i) and (ii), first recall Eq. (6~). The constants A, and B, can be 
rewritten as 

A, = pkmt(l + exp(-2w,*l,))(l - exp(2w,*l,)))‘, (234 

B, = 2A, exp(-w:l,)( 1 + exp(-2w,*l,)) ‘, (23b) 

and one recalls that W: < 0. Usually, when one solves numerically some initial or 
boundary value problem defined on an infinite interval, he either explicitly or 
implicitly assumes that the solution changes significantly over some reasonable long 
finite subinterval, while over the remaining infinite subinterval the solution is assumed 
to have some asymptotic behavior. This implies that for the singular problems under 
consideration one has to separate the infinite interval [a, co) into a finite subinterval 
[a, c] and an infinite subinterval (c, co). Over the former of these one can apply the 
procedure developed in the previous sections, while in this section the infinite subin- 
terval (c, co) will be paid some particular attention. It is seen from Eqs. (23) that 
I,+ co implies BpO and A,+p,w,*>O. 

For case (i), q(x) + co implies A, + co and B, + 0 independently of I,. Conse- 
quently, the finite subinterval [a, c] can be fixed from the condition that B, behaves 
as zero in the sense of the machine word length. Having in mind the fact that 
A, + co, the last two rows and columns of the matrix ]K@)], which correspond to 
the infinite interval (c, co), are eliminated from consideration, similarly to the ones 
used for Dirichlet boundary conditions at a finite endpoint of a regular problem. 
Consequently, for case (i) one can apply the algorithm already discussed. Our 
conclusion corresponds to Bailey et al. [2] in the sense that for a limit point 
singularity the solution approaches the singular point regardless of the boundary 
condition imposed there. 

Case (ii) can be treated in a similar manner. Now B, --t 0, but A, remains finite. 
Thus, the finite subinterval [a, c] has to be determined from the condition that A, 
behaves as a constant as x + b and the corresponding subintervals remain finite. After 
this has been done, one fixes the division of [a, 03) as composed of a finite number of 
finite subintervals plus the infinite subinterval (c, co). This means that if the division 
of [a, c] comprises n subintervals, the division of [a, co) will comprise n + 1 subin- 
tervals, the last of which will be the infinite one. Consequently, A,, + , will have the 
form 

(24) 
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having in mind that for the case under consideration p(x) = 1. This formulation 
corresponds to [ 121 in the sense that when a limit circle singularity is present, the 
solution advances towards the singular endpoint following a trajectory prescribed by 
the particular boundary condition imposed at the singular endpoint. Moreover, as 
Eqs. (23) are valid for 0: < 0, it is clear that if q,, < 0 (depending on T(X), which is 
supposed bounded and nonnegative), one may have a finite number of eigenvalues on 
the negative semiaxis, while otherwise the whole spectrum will be continuous. 

7. TEST CALCULATIONS 

The procedure for the computation of the eigenvalues and the eigenfunctions 
developed in this paper was programmed in APPLESOFT BASIC and a number of 
test examples were calculated on an APPLE II personal computer. The code was 
tested on a number of problems, the solutions of which had been previously 
published. Some illustrative results are presented in Table I. The symbols appearing 
in column 1 of this table are the same as in the original references. 

First, regular problems with constant coefficients subject to different boundary 
conditions [2 1 ] were solved. The eigenvalues of each particular problem were 
calculated utilizing several different divisions of the integration interval into subin- 
tervals. The results for the eigenvalues of a particular problem obtained through the 
various divisions were fully coincident-row 1 from Table I. Next, some discon- 
tinuous coefficient problems on finite intervals were solved [22, 23 1, utilizing the 
same testing strategy-row 2 in Table I. Our results are in full agreement with the 
corresponding references. 

We resolved most of the problems from [ 14, 151. No case of missing eigenvalues 
was identified. This test also proved the applicability of our algorithm for practically 
asymptotic problems. Some illustrative results are given in row 3 of Table I. 

TABLE I 

Mikhailov 1 I 1 
Bi, = 1, Bi, = 1 1.7070 13.4923 43.3572 

Muhlholland and Cobbler I23 1 277.433 1953.73 3404.2 I 

Canosa and de Oliveira [ 14 1 -3 119.20 -2959.43 -2801.85 
q= 1600,n= IO4 
Neumann boundary 

Nunge and Gill 124 I 5.9801 304.453 997.897 
N = 1.73. n = 100 -0.00 -80.83 14 -263.279 



336 MIKHAILOV AND VULCHANOV 

The last test to be discussed here is the recalculation of the first three eigenvalues 
1,?c and A,:, i = 1,2, 3 from [24]-row 4 of Table I. Again there is full agreement 
between our results and the ones obtained in the original reference. 

The test calculations for infinite endpoint singular Sturm-Liouville problems as 
discussed in the previous section are presently in preparation. The tests performed to 
verify the procedure for the computation of the eigenfunctions and the choice of step 
sizes gave more than encouraging results. They will be discussed in a future 
publication together with some algorithmic and programming details concerning the 
code. 
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